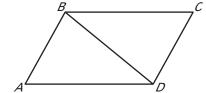
Practice 4.4 Programmer Practice For use with pages 240–247


Use the diagram to name the included angle between the given pair of sides.

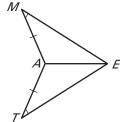
1. \overline{AB} and \overline{BC}

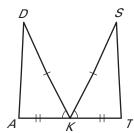
2. \overline{BC} and \overline{CD}

3. \overline{AB} and \overline{BD}

4. \overline{BD} and \overline{DA}

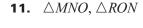
5. \overline{DA} and \overline{AB}

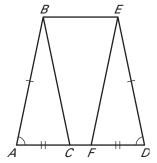

6. \overline{CD} and \overline{DB}

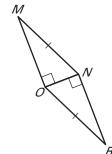

Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate.

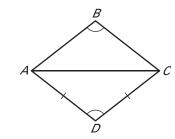
7. $\triangle MAE$, $\triangle TAE$

9. $\triangle JRM$, $\triangle JTM$

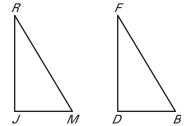





Decide whether enough information is given to prove that the triangles are congruent. If there is enough information, state the congruence postulate or theorem you would use.

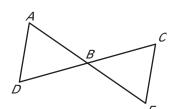

10. $\triangle ABC$, $\triangle DEF$

12. $\triangle ABC$, $\triangle ADC$



LESSON 4.4 **Practice** continued For use with pages 240–247

State the third congruence that must be given to prove that $\triangle \textit{JRM} \cong \triangle \textit{DFB}$ using the indicated postulate.


13. GIVEN: $\overline{JR} \cong \overline{DF}$, $\overline{JM} \cong \overline{DB}$, $\underline{?} \cong \underline{?}$ Use the SSS Congruence Postulate.

- **14. GIVEN:** $\overline{JR} \cong \overline{DF}$, $\overline{JM} \cong \overline{DB}$, $\underline{?} \cong \underline{?}$ Use the SAS Congruence Postulate.
- **15. GIVEN:** $\overline{RM} \cong \overline{FB}$, $\angle J$ is a right angle and $\angle J \cong \angle D$, $\underline{?} \cong \underline{?}$ Use the HL Congruence Theorem.
- **16. Proof** Complete the proof.

Statements

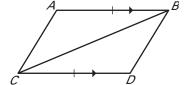
6. $\triangle ABD \cong \triangle EBC$

Reasons

GIVEN: *B* is the midpoint of \overline{AE} . *B* is the midpoint of \overline{CD} .

PROVE: $\triangle ABD \cong \triangle EBC$

1. B is the midpoint of \overline{AE} .	1. <u>?</u>
2. _ ?	2. Definition of midpoint
3. B is the midpoint of \overline{CD} .	3. _ ?
4. _ ?	4. Definition of midpoint
5. $\angle ABD \cong \angle EBC$	5. _ ?


LESSON 4.4

Practice continued For use with pages 240–247

17. Proof Complete the proof.

GIVEN: $\overline{AB} \parallel \overline{CD}, \overline{AB} \cong \overline{CD}$

PROVE: $\triangle ABC \cong \triangle DCB$

Statements	Reasons
1. $\overline{AB} \parallel \overline{CD}$	1. <u>?</u>
2. $\angle ABC \cong \angle DCB$	2. <u>?</u>
3. $\overline{AB} \cong \overline{CD}$	3. <u>?</u>
4. $\overline{CB} \cong \overline{CB}$	4. <u>?</u>
5. $\triangle ABC \cong \triangle DCB$	5. ?